Effective Burnup ================ This model computes an *effective burnup* that accumulates only when the fuel temperature is below a threshold. The intent is to represent burnup-driven effects that are assumed to be active primarily at relatively low temperature. Reference --------- G. Khvostov et al., WRFPM-2005, Kyoto, Japan, 2005. Inputs ------ The model uses: - ``Temperature`` (history variable) - ``Specific power`` (sciantix variable) - ``Time step`` (physics variable) Model formulation ----------------- A temperature threshold is defined as: .. math:: T_{\mathrm{th}} = 1273.15~\mathrm{K} The effective burnup rate is taken equal to the burnup rate when either: - the current temperature is below the threshold, or - the temperature crosses the threshold within the current step (from below to above). Otherwise, the effective burnup rate is set to zero: .. math:: \dot{B}_{\mathrm{eff}} = \begin{cases} \dfrac{P_{\mathrm{spec}}}{86400} & \text{if } T \le T_{\mathrm{th}} \text{ or } (T > T_{\mathrm{th}} \ \wedge \ T^{n} < T_{\mathrm{th}}) \\ 0 & \text{otherwise} \end{cases} where :math:`P_{\mathrm{spec}}` is the specific power. Time integration ---------------- The effective burnup is updated by time integration: .. math:: B_{\mathrm{eff}}^{n+1} = B_{\mathrm{eff}}^{n} + \dot{B}_{\mathrm{eff}}\,\Delta t In the implementation this is performed using ``solver.Integrator`` with the current ``Time step``.